Search results for "biogenic selenium nanoparticle"

showing 3 items of 3 documents

Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphyloco…

2017

In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more e…

Anti-Infective Agent0301 basic medicineStaphylococcus aureusMetal Nanoparticleschemistry.chemical_elementBacillusBiocompatible MaterialsBioengineeringBacillus02 engineering and technologymedicine.disease_causeApplied Microbiology and BiotechnologyBiochemistrybiofilmantimicrobialsNanomaterialsMicrobiologyHydroxyapatiteSelenium03 medical and health sciencesAnti-Infective AgentsBiogenic Selenium nanoparticles (SeNPs) Hydroxyapatite Bacillus biofilm antimicrobials green synthesisOrganometallic CompoundsEnvironmental MicrobiologymedicineResearch ArticlesBiocompatible MaterialOrganometallic CompoundbiologyPseudomonas aeruginosagreen synthesisBiofilmBacillus mycoides021001 nanoscience & nanotechnologybiology.organism_classificationAntimicrobialBacilluDurapatite030104 developmental biologychemistryStaphylococcus aureusBiofilmsPseudomonas aeruginosaStaphylococcus aureu0210 nano-technologySeleniumResearch ArticleBiotechnologyBiogenic Selenium nanoparticles (SeNPs)
researchProduct

Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability

2021

Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…

BiocompatibilityGeneral Chemical EngineeringNanoparticle02 engineering and technologyDFT calculationsArticleMicrococcusNanomaterials03 medical and health sciencesAdsorptionbiogenic selenium nanoparticlesMoleculeGeneral Materials ScienceFourier transform infrared spectroscopyQD1-999030304 developmental biologymultivariate statistical analysischemistry.chemical_classification0303 health sciencesBiomolecule021001 nanoscience & nanotechnologyChemistryFTIR spectroscopychemistryChemical engineering<i>Micrococcus</i>thermodynamic stabilityChemical stabilityselenium nanorods0210 nano-technologyNanomaterials
researchProduct

Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis

2020

Abstract Various technological and biomedical applications rely on the ability of materials to emit light (photoluminescence [PL]), and, among them, metal nanoparticles (NPs) and semi-conductor Quantum Dots (QDs) represent ideal candidates as sensing probes and imaging tools, portraying better PL features than conventional organic dyes. However, the knowledge of PL behavior of semiconductor NPs – i.e., selenium; SeNPs – is still in its infancy, especially for those synthesized by microorganisms. Considering the essential role played by biogenic SeNPs as antimicrobial, anticancer, and antioxidant agents, or food supplements, their PL properties must be explored to take full advantage of them…

Photoluminescencebiogenic selenium nanoparticleQC1-999Nanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyNanomaterials03 medical and health sciencesstenotrophomonas.stenotrophomonasbiogenic selenium nanoparticlessemiconductor nanoparticlesElectrical and Electronic Engineering030304 developmental biology0303 health sciencesTunable photoluminescencePhysicssemiconductor nanoparticle021001 nanoscience & nanotechnologyFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistryphotoluminescencefluorescence0210 nano-technologySeleniumSemiconductor NanoparticlesBiotechnologyNanophotonics
researchProduct